= s : ' i
~ Software design is both a process and a model. The design process is a sequgncggﬁ
steps that enable the designer to describe all aspects of the soﬁV\{are to be built, Itis
important to note, however, that the design process is not simply a cookbook.
Creative skill, past experience, a sense of what makes —good| software, and an
overall commitment to quality are critical success factors for a competent df:Slgn.
The design model is the equivalent of an architect‘s plans for a hou§e. It begms.by |
~ representing the totality of the thing to be built (e.g., a three-dimensional renderl‘ng
of the house) and slowly refines the thing to provide guidance for constructing
each detail (e.g., the plumbing layout). Similarly, the design model that is Create.d.
for software provides a variety of different views of the computer sowaare. Basic
Vsign principles enable ‘he software engineer to navigate. the d§51gn process.
Davis [DAV95] suggests a set of principles for software design, which have been
adapted and extended in the following list:

® The design process should not suffer from “tunnel vision.” A good designer

should consider alternative approaches, judging each based on the requirements
of the problem, the resources available to do the job.

® The design should be traceable to the analysis model. Because a single
element of the design model often traces to multiple requirements, it is necessary

to have a means for tracking how requirements have been satisfied by the design
model.

® The design should not reinvent the wheel. Systems are constructed using a
set of design patterns, many of which have likely been encountered before.
These patterns should always be chosen as an alternative to reinvention. Time is
short and resources are limited! Design time should be invested in

representing
truly new ideas and integrating those patterns that already exist.

® The design should “minimize the

intellectual distance” between the
software and the problem as it exists

in the real world. That is, the structure

Scanned by CamScanner

esign work begins.

= design compo

in defining interfaces between

ﬂl. _should be structured to accOml.nod’ate cha A}el.. The. 1
discussed in thWable a desl ieve this pripeiple.

" The design should be structured to degrade gently, even when abe::ran
data, events, or operating conditions are encountered. Well- designed
 gsoftware should never —bomb.| It should be designed to_ afzcommodate '
' ,gﬁusﬁal circumstances, and if it must terminate processing, dosoina graqeful

' manner.

Desigh is not coding, coding is not design. Even when detailed procedural

designs are created for program components, the level of abstraction of the
design model is higher than sourcellcode. The only design decisions made at
the coding level address the small implementation details that enable the

procedural design to be coded. "

o The design should be assessed for quality as it is being created, not afier
the fact. A variety of design concepts and design measures are available to

assist the designer in assessing quality.

e The design should be reviewed to minimize conceptual (semantic)
errors. There is sometimes a tendency to focus on minutiae when the design is
reviewed, missing the forest for the trees. A design team should ensure that
major conceptual elements of the design (omissions, ambiguity, inconsistency)
have been addressed before worrying about the syntax of the design model.

'Design-Concepts

The design concepts provide the software designer with a foundation from which

more sophisticated methods can be applied. A set of :
has evolved. They are as follows: pp et of fundamental design concepts

| 1. Abstraction - Abstraction is the
reducing the information conte
phenomenon, typically in order to

process or result of generalization by
nt .of a concept or an observable
rretam only information which is relevant

\'

Scanned by CamScanner

101C

Jlementary concepis M
Al

divided into components ¢

‘Software Architecture - IMMWW
he ways in which that structure provides conce fual integrity 1or a system.
 Good software architecture will yield a good return on nvestment with
'reépect to the desired outcome of the project, €.2. in terms of performance,

quality, schedule and cost.
5. Control Hierarchy - A progra
a program component and imp

m structure that re resents the or anization of

lies a hierarchy of control.
ogram structure can be divided both

6. Structural Partitioning - The pr
horizontally and vertically. Horizontal partitions define separate branches of
m function. Vertical partitioning

modular hierarchy for each major progra .
suggests that control and work should be distributed top down 1n the

program structure.
7. Data Structure - It is a representation_of the logical relationship among

- individual elements of data.
8. Software Procedure - It focuses on the proc

individually.

9 Information Hiding - Modules s
information contained within a mo
nve o need for such information.

essing of each module

hould be specified and designed so that
dule is inaccessible 10 other modules that

Principles of Software Design

Developing design is.a cumbersome '

] desig ; e process as most expansive errors are often

;)I:atgguced in tél}S phase. Moreover, if these errors get unnoticed till later phases, it

Rt ggsxinoye 1f1ﬁcult to correct them. Therefore, a number of principles are followed
gning the software. These principles act as a framework for the designers to

follow a good design practice.

Scanned by CamScanner

Programming
paradigm

Uriform and
integrated

Degrade gently

Code Reuse
Prototyping

Some of the commonly followed design principles are as following.

. : i t
| 1. Software design should correspond to the analysis model.dOf(en ; jg:;igti‘;lge";e;]
corresponds to many requirements, therefore, we must know how the design

the requirements represented by the analysis model. A : :
” 2 Chogge the righIt) progran};ming pyaradigln: A programming paradigm describes thg
structure of the software system. Depending on the nature and type of application, dlffefffm
programming paradigms such as procedure oriented, object-orxentgd, apd prototyping
| paradigms can be used. The paradigm should be chosen keeping constraints in mind such as
time, availability of resources and nature of user's requirements.
i 3. Software design should be uniform and integrated: Software design is considered
i uniform and integrated, if the interfaces are properly defined among the design components.
Fofl;‘;his, rules, format, and styles are established before the design team starts designing the
software.
| 4. Software design should be flexible: Software design should be flexible enough to adapt
i changes easily. To achl_eve the flexibility, the basic design concepts such as abstraction,
refinement, and modularity should be applied effectively.
5. tSoﬂware design should ensure minimal conceptual‘ (semantic) errors: The design
| e et oo of den such s anbiguouness an
! i modes ce belore dealing with the syntactical errors present in the

| ;

I 6.

?j Software design should be structured to degrade gently: Software should be designed
|

il

|

|

to handle unusual changes and circumstances, and if th i
: | e need arises fi ination, i

S0 1n a proper manner so that functionality of the software is not affectgcri i Lo
% Soﬁlware design should represent correspondence between th;: softw

world problem: The software design should be structured in such awg that i e,

mttl;xle real-world problem. Y et italways relafes
8. Software reuse: Software engj i

' ; gineers believe on the phrage: ° i
wflfxeel..Therefore, sqftware components should be designedpin ssueéh bt i tthe
eftectively reused to increase the productivity. % "y that they can be

Scanned by CamScanner

 Note that d

nstrate functions that g ! EYPINE S
signing software that is not in accordance with the customer's

constrained by the exist
the implementation language, the existing file and data s
the evolution of each software

tional practices. Also,
luations, references and maintenance.

demonstr
' reducing risks of de

ne tS.’r

ing hardware
tructures, and
design should

reqt ,
esign principles are often

configuration,

 the existing organiza
be meticulously designed for future eva

The Software Design Methodology

ow the whole software development
e design of software is essentialiy a
de or a methodology for this task.
d rules that govern a system. A

vity as it determines h

Software design is an important acti

task would proceed including the system maintenance. Th
iFes a structure which will provide a gui

f activities. Thus, from these

skill, but it usually requ
defined as the underlying principles an
gy. Different

A methodology can be
method can be defined as a systematic procedure for a set o
] encompass the methods used within the methodolo

definitions, a methodology wil
methodologies can support work in different phases of the system life cycle

Data Design in Software Engineering _
mplexes, modular and efficient

Data design is tha first design activity, which results in fewer co
program structure. The information domain model developed during analysis phase 1s
ftware. The data objects,

transformed into data structures needed for implementing the so
depicted in entity relationship diagrams and the information stored
During the data design process, cata

attributes, and relationships
base for data design activity.
r the data. For specifying and

in data dictionary provide a
types are specified along with the integrity rules required fo
inciples should be followed. These principles are

designing efficient data structures, some pri

listed below.
The data structures needed for implementing the software as well-as the operations that can be

applied on them should be identified.
A data dictionary shou}d be developed to depict how different data objects interact with each
gther and wf?at constr;}llmts are to be imposed on the elements of data structure

tepwise refinement should be used in data design process and detailed desi \ decisi
e process, - p esign decisions should
Only those modules that need to access data stored in a d '

' ata structure direct

of t}le representation of the data structure. el
A library containing the set of useful data structures along with the operations that can be

performed on them should be maintained.

Scanned by CamScanner

1, namely, program componient

. SRR t level, the design
AR At the program component level, et
e e s i
 the application level, it is crucial to convert the data mode the business level
business objectives of a system could be achieved. At the

of information stored in different databases should be reorganized into datg

(- C 1 siness.
ouse, ikhich-e'nables data mining that has an influential impact on the bu

~ The Design Process

Design is a formation of a
well defined. When needs
problem has been identifie
it involves synthesis and a

plan of activities to accomplish a recognized need. The r;:-:ed m(aily be
are well-defined, it is likely due to the fact that neither t ((ai nge. nor
d. The design process is a process of creative invention aqd e mtl?n,
nalysis, and thus, is difficult to summarize in a simple design formula,

Design is an applied science. In a software design problem, a number of solutions exist. The

designer (each word "designer" can also refer to "designers'.') must plan and execute the design
strategy taking into account certain established design practices.

The designer often has to fall back on previous experience gained and has to study the existing

"The process of design consists of taking a specification (a description of what is required) and
converting it into a design (a descriptio

n of what is to be built), A good design is complete (it wil]

Scanned by CamScanner

4
=il

" The Role of Design Methodology

~ notations or diagr

agreed that softwa design
of computer and information systems; unless one can
s design of quality software, one cannot truly be considered

be overemphasized (Freeman,
stematic means of
¢ decision-making.
n uses a set of
rtant for large

gy cannot
des a logical and sy
a set of guidelines fo
e of activities, and ofte
ogy is especially 1mpo
-the-large (where many designers are
t of common communication

ftware design methodolo

1980). Software design methodology provi

proceeding with the design process as well as
The desi gn methodology provides a sequenc
ams. The design methodol

complex projects that involve programming-in
involved); the use of a methodology establishes a s€ at
codes and a set of common objectives. In addition,

channels for translating design to
there must be an objective match between the overall character of the problem and the
features of the solutio n approach, in order for a methodology to be efficient.

Design Phase in Software Systems Development

he software development process as consisting of
finition, development and maintenance phases. The
the software system, the development phase
phase defines the support and future
laced in the development phase
ther models of the Software

The role of the so

Pressman (1992) has described t
three broad generic phases - the de
definition phase defines the "what" of
define s the "how" and the maintenance

necessary changes. Accordingly, software design 1s p

of Pressman's Software Life Cycle model. There are O
Development Life Cyc le (SBLC) model (see Fairley, 1985; Burch, 1992; Sage &

Palmer, 1990). Almost every text on software development includes a SDLC model,
there are some variations but, in general, the basic phases or activities are always
present. The basic phases that are ever present are the analysis, design, testing,

implementation and maintenance phases.

quirement definition, from which the software
he specification into a set of

the algorithms, data structures, architecture and interfaces.

ded and tested for defects in function, logic and
s implemented and maintained by

lves the re

The analysis phase invo
d. Design then translates t

specifications are derive
notations that represents

The representations are then CO
implementation. When the software is ready, it i

support personnel.

Scanned by CamScanner

: otyping Model (McCracken & Jackson, 1982; Gladden 198>
el (Bochm, 1986).

the:diﬁ'erent models
$ @ major phase in th

; entral role in the models. Software desigp
’e(sizi;%v’afel Z?Ztini development. In this research.prOJect, the
- design process of the SDLC will be considered, which includes requirement def
A% 41§nition Or System analysis, System or requirement specifications, logical or System
- design, and detailed Or program design and development. Even though pure software
design consists of architectural and detailed design. Pure software design cannot proce

- ed without the requirement definition and specification stages. Architectural design
deals with the general

: » P6), detailed design involves the

lution and with modeling the detailed

ts components." It is concerned with the detailed "how to" for
packaging all the components together.

| The élassiﬁcation of software design approaches

Level-Oriented Design

Scanned by CamScanner

o inherent procedure or guidelines for this. There is also aj

,) ise refinement is not done carefully or "correctly this will oc

ard the end of the process, that is, at the lower levels. This can be ostly,

ecially if there are many different designers or programming teams working on a

- single system.. As a result, the top-down process is often used in the initial phase of

| S the design process to break down the different components Of modules of a system.

' The top-down process has also been used as a preliminary Step in the other design
methodologies. Once the modules of the system have been determined, they can be

divided amongst the different designers or design teams.

The design by composition strategy involves the evolution of a solution by building
upon the solution from the previous stage. Using this technique, additional features
are added as the solution evolves. This strategy uses as its origin, the basic or simple
‘nitial solution and through an iterative composition process add or expand the

solution to include additional modules. This approach will also encompass the
bottom-up design, ‘where the lowest level solution 18 developed first and gradually
dded a few models, such as the

builds up to the highest level. Freeman (1983) has a

outside-in model where what the end-users sees (external functions of the system) are

defined as the top-level decisions and the implementation (the inside of the system) as

the lower-level decisions. This model was created to overcome the tendency of
The alternative to the

designers to pay insufficient attention to the needs of end-users.
outside-in model is the inside-out model, where decisions relating to the

implementation (inside) of the system are made before the external function of the
system. Another model is based on the most-critical-component-first approach, where
one first design the components of the systems that are the most constrained so that
these critical parameters arc satisfied. Then the rest of the system components are
designed. Often these models are conceptual, not to be rigorously enforced because In

a real design effort, integration of models is often necessary.

Data Flow-Oriented Design

In the data flow-oriented design approach, which is often called Structured Design,

o is used to derived program structure. In the data flow-

information flow characteristi
oriented approach, emphasis is on the processing or operations performed on the da ta.

Design is information driven. Information may be represented as a continuous flow
that is transformed, as it is processed from node to node in the input-output stream. As
software can ideally be represented by a data flow diagram (DFD), a design mod el
that uses a DFD can theoretically be applied in the software development project. The
data flow-oriented approach is especially applicable when information is processed

Scanned by CamScanner

pplied when a single information item causes ﬂ-oxy .
The DFD is mapped to a substructure that acquires

T é.ﬁbther substructure controls all the data procetslsmg |
on a transaction. A few examples of structured dCSIgI} or %ati ow-
L é‘"th'odologies are Structured Analysis and Design dechlque
natic Activity Modeling Method (SAMM) and Structure esign

Software design is closely related to the data structure of the system, for example,
~ alternative data wil require a conditional processing element, repetitive data wijl|

considerations in the information domain, there are similarities between both
apiroaches. Both depend on the analysis step to build the foundation for Jater steps.
Both attempt to transform information into 3 softwars structure; both arc driven by
information. In data structure-oriented design informatjon Structure are represented
usiug hierarchical diagrams; DFD has Jitt[e relevance; transformation and transaction
flows are not considered. Data Structure-oriented design have a few tasks - evalyate
the characteristics of the data Structure, represent the data in its Jowest form such as
repetition, sequence or selection, map the data Tepresentation into a contro| hierarchy ;’
for software, refine the contro] hierarchy and thep develop a procedura description of ?
the software, Some examples of the data structure-oriente design approach are the g
Jackson System Development (ISD) and the Data Structured Systemg Development |
(DDSD) which is also called the Warnier-Orr methodology.

Scanned by CamScanner

: , i ormation hiding .
ggiumers of information or an informati
gl :om;-tn‘,m re(\)nd dre\a_ted operations that may transform-
Bt procedural and .control constructs that may be in i

sage, that 1s, 2 request to the object t0 perform one of its operations. -)¢ ‘
as an interface where messages are passed 10 specify what operation On et ‘

jso ha
ect is desired. The object that receives a message will then determine how the
y this means, information hiding (that is, the

- oY)
‘-‘; requcsted operation is to be performed. B
m all the elements outside the object) 18

details of implementation are hidden fo
achieved. Also objects and their operations are inherently modular, that is, software
ith a well-defined interface

clements (data and process) are grouped together W

f?j mechanism (that is, messages).
- Object oriented design 1S based on the concepts of: objects and attributes,
members, wholes and parts. All objects encapsulate datd (the attribute values that

can be defined), constants (set

define the data), other objects

yalues), and other related information. Encapsulation means that all of this
information 18 packaged into a single name and can be re-used. The object oriented
design 18 rather new and as such it is ent moment.
Object oriented design encompasses d procedura\
design. BY : dentifying classes and objects, ed: by couphing
operations to data, modules are specified and a structur® for the softwar® 1S
established; DY developing 2 mechanism for using objects (for example, passing of

messages) interfaces ar¢ described.

classes and

(composite objects

omes in above design concept

ed Architecture c
of a system encapsulate data and

Object—orient

In object-orient d architectural style, components
operations, which are applied 1o manipulate the data. In this style, components are
represented as objects and they interact with each other through methods (connectors).
This architectural style has two important characteristics, which are listed below.

Objects maintain the integrity of the system.

An object is not aware of the representation of other objects.

Some of the advan i ith the object—oriented architecture are listed below.

It allows designers to decompo i lection of independent objects.

other and hence, they can be changed

5. The imp\ementation detail of objects is
without affecting other objects.
»

P

Scanned by CamScanner

ese details are used to specify the components of the system along with. their 1r;put5,
uts, functions, and the interaction between them. An architectural design performs

e following functions.
1.1t defines an abstraction level at which the designers can specify the functional and

performance behaviour of the system.
2. Tt acts as a guideline for enhancing the system (when ever required) by describing

those features of the system that can be modified easily without affecting the

system integrity.
3. It evaluates all top-level designs.
4. It develops and documents top-level design for the external and internal interfaces.

5. It develops preliminary versions of user documentation.

6. It defines and documents preliminary test requirements and the schedule for
software integration.

7. The sources of architectural design are listed below:.

8. Information regarding the application domain for the software to be developed

9. Using data-flow diagrams
10. Availability of architectural patterns and architectural styles.

Architectural design is of crucial importance in software engineering during which the

essential requirements like reliability, cost, and performance are dealt with. This task

is cumbersome as the software engineering paradigm is shifting from monolithic,
stand-alone, built-from-scratch systems to componentized, evolvable, standards-
based, and product line-oriented systems. Also, a key challenge for designers is to
know precisely how to proceed from requirements to architectural design. To avoid
these problems, designers adopt strategies such as reusability, componentization,

platform-based, standards-based, and so on.

Though the architectural design is the responsibility of developers, some other people
like user representatives, systems engineers, hardware engineers, and operations

Scanned by CamScanner

() (S o= CLS) o

ructural model: Mlust ' ‘
. rate i P
amic model: Speci s architecture as an ordered collection of program com

fies th i
B Bt icture o < e behavioral aspect of the software architecture and in

; stem co : ;]
external emnronmenty nfiguration changes as the function changes due to change inthe

Process model: Focuse i :
R lomented inthe syste ;l on the design of the business or technical process, which must be

Functi 2

Framemi;lkn::;lgli .Rzpresents the functional hierarchy of a system

T e .1. ttempts to identify repeatable architectural design patterns encountered
application. This leads to an increase in the level of abstraction.

Architectural Design Output

TX;E) BIChltqctural design process results in an Architectural Design Document
(A). This document consists of a number of graphical representations thatcomprises
software models along with associated descriptive text. The softwaremodels include

static model, interface model, relationship model, and dynamic processmodel. They

show how the system is organized into a process at run-time.

Architectural design document gives the developers a solution to the problem stated in
the Software Requirements Specification (SRS). Note that it considers only those
requirements in detail that affect the program structure. In addition to ADD, other
outputs of the architectural design are listed below.

Various reports including audit report, progress report, and configuration status accounts report
Various plans for detailed design phase, which include the following

Software verification and validation plan

Software configuration management plan

Software quality assurance plan

Software project management plan.

Architectural Styles

Architectural styles define a group of interlinked systems that share structural and
semantic properties. In short, the objective of using architectural styles is to establish a
structure for all the components present in a system. If an existing architecture is to be
re-engineered, then imposition of an architectural style results in fundamental changes
in the structure of the system. This change also includes re-assignment of the

functionality performed by the components.

By applying certain constraints on the design space, we can make different style-specific
analysis from an architectural style. In addition, if conventional structures are used for
an architectural style, the other stakeholders can easily understand the organization of

the system.

Scanned by CamScanner

of components to form a system
able the software designer to identify
ng the characteristics of its components.
commonly used architectural styles are data-flow arc!utecture, object
architecture, layered system architecture, data-centere.d architecture, and call
'n architecture. Note that the use of an appropriate architectural style promotes
use, leads to code reuse, and supports interoperability.

125 a whole by studyi

a-flow Architecture

ow architecture is mainly used in the systems that accept some Inputs and
form it into the desired outputs by applying a series of transformations. Each
‘component, known as filter, transforms the data and sends this transformed data to
other filters for further processing using the connector, known as pipe. Each filter
works as an independent entity, that is, it is not concerned with the filter which is
producing or consuming the data. A pipe is a unidirectional channel which transports
g the data received on one end to the other end. It does not change the data in anyway; it
- merely supplies the data to the filter on the receiver end.

Pipes

AKFllteQé Filterﬁ— Fiiter)——————+{_Filter)}»
> Filter Filterg;@ter »

{a) Pipes and Filters

—>(Fiiter)»{ Filter }»{ Filter }»{ Filter }>

(b) Batch Sequential

Data-flow Architeclure

Most of the times, the data-flow architecture degenerates a batch sequential system. In
this system, a batch of data is accepted as input and then a series of sequential filters are
~ applied to transform this data. One common example of this architecture is UNIX shell
programs. In these programs, UNIX processes act as filters and the file system through
hich UNIX processes interact, act as pipes. Other well-known examples of this

the characteristics of the

Scanned by CamScann

er

s maintainable and modifiab
It supports concurrent executio o B
o :(I)nf&glzadvantages associated with the data-flow ar
T e etgener:ates to batch sequential system. e
S0 is‘difﬁ::)u lr'zrtowde enough support for applications requires user int
o synchronize two different but related streams.

Procedural Design

The procedural design is often understood as a software design process that uses mainly

control commands such as: sequence, condition, repetition, which are applied to the

predefined data. Sequences serve to achieve the processing Steps in order that is
essential in the specification of any algorithm.

The procedural design is often understood as a software design process that uses mainly
hich are applied to

control commands such as: sequence, condition, repetition, W

the predefined data.
Sequences serve 1o achieve the processing steps in order that is essential in the
specification of any algorithm.

Conditions provide facilities for achieving selected processing according to some

Jogical statement.

Repetitions serve to achieve loopings during the computation process.
These three commands are implemented as ready programming language constructs.

The programming languages that provide such command constructs are
called imperative programming languages.

The software design technique that relies on these constructs is called procedural
design, or also structured design.

St

Scanned by CérﬁSCaAhvhéAr&

